Crops Yield – Climate Regression Modeling Based on AIC

Dr. Sarfaraz

Chief Met. PMD-Karachi

sarfarazmet@hotmail.com

Sequence

- Pakistan main crops spatial mapping
- Akaike Information Criteria (AIC) Methodology
- AIC-based regression model for wheat-climate association
- AIC-based regression model for rice-climate association
- AIC-based regression model for cotton-climate association
- AIC-based regression model for maize-climate association
- Significant climate parameters identified for each crop
- Future drought scenario under animated global warming
- Potential impact on crops due to future projected climate
- Adaptation
- Conclusion

Methodology for AIC (Akaike Information Criteria) Calculation

- The AIC estimates the comparative value of arithmetical prototypes for a particular dataset.
- The Akaike's procedures in essence are information-theoretic as they rely on the K-L information (Akaike, 1973, 1983b, 1992 & 1994).
- Having a set of candidate simulations, *AIC* is then computed for each simulation and the one with a minimal *AIC* score is regarded as the finest prototype for given empirical data.
- Model selection based on AIC is comparable to definite cross-validation procedures (Stone, 1974 & 1977).
- The AIC value for each model is calculated by

AIC = n*ln(RSS/n)+2*K

where, 'n' is the total quantity of observation (sample size), K is the degree of freedom or number of parameters, and RSS is the residual sum of squares.

• Then using refinement technique for corrected estimate for small data samples (Hurvich & Tsai, 1989; Burnham & Anderson, 2002) the AIC-corrected, AICc, is calculated as;

AICc = AIC+(2*K(K+1))/ n-K-1

• And finally the shortest distance to the 'truth' Δi for each model is calculated by

 $\Delta i = AICi - minAICc$

- Δi is the strength of evidence whose minimum value gives the best model (Burnham & Anderson, 2001).
- The crops-climate association or correlation is assessed by linear and multiple regression models using the statistical package for social scientists, SPSS (IBM SPSS Statistics 21, 2012).

District-wise Wheat production across Pakistan

- Bulk of wheat production (500-770 thousand tonnes) is done in Rahimyar Khan, Bhawalpur, Bhawalnagar, Vehari, Muzaffargarh, Jhang, Faisalabad, Okara and Sahiwal districts.
- Rest of districts' production fall in the range of 1-500 thousand tonnes/year.
- Extreme northeast of the country where no wheat crop is grown.

(Data source: PBS)

District-wise *Rice* **production in Pakistan**

- Rice production is maximum (over 500 thousand tonnes per year) in Larkana district
- Most of the rest districts in Punjab, KP and Sindh have annual production =<500 thousand tonnes and
- Some districts in KP, Western Sindh and Balochistan produce 1000 tonnes/year.

(Data source: PBS)

District-wise Cotton production across Pakistan

- Maximum of =>500-985 thousands bales per year is produced in Bhawalpur, Bhawalnagar, Multan, Khaniwal and Vehari districts.
- Most districts in central & south Punjab, Sindh and east/northeast Balochistan have a growth of 1000-500,000 tonnes bales per year.

District-wise *Maize* production across Pakistan

- Three districts in Centre-East and one in Northwest produce maximum Maize crop of 100,000-139,000 tonnes/year.
- Most districts Punjab, KP and Southeast Sindh producing 100 thousand tonnes annually.

Wheat-climate best-fit regression models and their rankings based on AIC

	Dependent v a r i a b l e (predictand)	M o d e l Notation	Model Description (predictors)	df	AIC	AICc	Δi	Mode Rankir g
		M ₁	T _{max} +T _m	2	831.3	828.5	0.0	1
		M ₂	$T_{max} + T_m + R_1$	3	832.1	828.0	0.1	2
	Wheat yield	M ₃	$T_{min} + T_{max} + T_m + R_2$	4	832.9	827.8	0.2	3
		M ₄	$T_{min} + T_{max} + T_m + R_1$	4	833.4	829.2	0.7	4
		M ₅	$T_{min}+T_m+R_1$	3	832.9	829.4	0.9	5
		M ₆	T_{min} + T_{max} + T_{m}	3	833.2	829.7	1.2	6
		M ₇	T _m +R ₁	2	838.8	836.0	7.5	7

- Model M₁ (with ∆i=0) comprising seasonal mean and seasonal maximum temperatures, is the best-fit model
- M₂ (Δi=0.1) with same regressors but with an addition of rainfall (of DJFM) is the 2nd best-fit model.
- Models with values ∆i< 2 are considered as good as the best model.
- Models with $\Delta i = 6$ ought not be disregarded
- Models with values $\Delta i < 10$ can be regarded adequate.
- So, all 7 models given here are quite adequate models.

Rice-climate best-fit regression models and their ranking based on AIC

Dependent variable (predictand)	M o d e l Notation	Model Description (predictors)	df	AIC	AICc	Δi	M o d e l Ranking
	M ₁	T _m +T _{max} +R	3	400.1	401.0	0	1
	M ₂	$T_m + T_{min} + T_{max} + R$	4	401.8	403.5	2.4	2
	M ₃	T _{min} +T _{max} +R	3	403.4	404.4	3.3	3
	M ₄	T _{min} +R	2	404.4	404.8	3.8	4
	M ₅	T _m +T _{max}	2	405.0	405.5	4.5	5
Rice yield	M ₆	T _m +R	2	405.4	405.8	4.8	6
	M ₇	$T_m + T_{min} + T_{max}$	3	405.6	406.5	5.5	7
	M ₈	T _{min}	1	406.5	406.6	5.6	8
	M ₉	T _m	1	406.5	406.7	5.6	8
	M ₁₀	T _{max}	1	406.7	406.9	5.8	9
	M ₁₁	T _{max} +R	2	406.5	407.0	5.9	10
	M ₁₂	T _m +T _{min} +R	3	406.0	406.9	5.9	10
	M ₁₃	T _{min} +T _{max}	2	406.8	407.2	6.2	11
	M ₁₄	T _m +T _{min}	2	408.5	409.0	8.0	12 ⁹

Maize-climate best-fit regression models and their rankings based on AIC

Dependent variable (predictand)	M o d e l Notation	Model Description (predictors)	df	AIC	AICc	Δi	M o d e l Ranking
	M ₁	T _m +T _{max}	2	402.7	403.2	0	1
	M ₂	T _{min}	1	403.8	404.0	0.8	2
	M ₃	T _m	1	404.0	404.1	1.0	3
Maize yield	M ₄	T _{max}	1	404.2	404.4	1.2	4
	M ₅	T _{min} +T _{max}	2	404.3	404.7	1.5	5
	M ₆	T _{min} +R	2	404.6	405.1	1.9	6
	M ₇	$T_{min} + T_m + T_{max}$	3	404.1	405.1	1.9	6
	M ₈	T _m +R	2	405.3	405.7	2.6	7
	M ₉	T _{max} +T _{min} +R	3	405.1	406.1	2.9	8
	M ₁₀	T _m +T _{min}	2	405.8	406.3	3.1	9
	M ₁₁	T _{max} +R	2	406.2	406.7	3.5	10
	M ₁₂	$T_m + T_{min} + T_{max} + R$	4	405.1	406.7	3.6	11
	M ₁₃	T _m +T _{min} +R	3	406.5	407.4	4.2	12 10

Cotton-climate best-fit regression models and their rankings based on AIC

Dependent variable (predictand)	M o d e l Notation	Model Description (predictors)	df	AIC	AICc	Δi	M o d e l Ranking
	M ₁	T _{min}	1	540.6	540.7	0	1
	M ₂	T _m	1	540.8	540.9	0.2	2
Cotton vield	M ₃	T _{max}	1	540.8	540.9	0.2	2
	M ₄	$T_{min}+T_m+T_{max}$	3	540.2	541.0	0.3	3
	M ₅	T _m +R	2	542.3	542.7	2.0	4
	M ₆	T _{min} +R	2	542.4	542.8	2.0	4
	M ₇	T _{max} +R	2	542.6	543.0	2.3	5
	M ₈	T_{min} + T_{max}	2	542.8	543.2	2.4	6
	M ₉	T _m +T _{max}	2	542.8	543.2	2.5	7
	M ₁₀	T _{max} +T _{min} +R	3	544.3	545.1	4.3	8
	M ₁₁	T _m +T _{max} +R	3	544.3	545.1	4.4	8
	M ₁₂	T _m +T _{min} +R	3	544.4	545.2	4.4	9

Seasonal (JAS, DJFM & AMJ) Rainfalls Trends

No	Station	S Statistic	Z value	p-value	Test Result					
a. Monsoon (JAS) rainfall trend										
1	Bunji	355	2.57	0.01**	Statistically significant increasing trend	Station	S Statistic	Z value	p-value	Test Result
2	Chilas	448	3.2453	0.001**	Do			c. Spring	(AMJ) rainfal	ltrend
3	Gupis	271	1.9601	0.04*	Do	Barkhan	454	3.2888	0.001**	Statistically significant increasing
4	Skardu	421	3 0494	0 002**	Do	Bhawalnagar	463	3.3541	0.0008**	Do
	Sharaa	121	5.0151	0.002		Bahawalpur	276	1.9973	0.05*	Do
5	Islamabad	332	2.403	0.02*	Do	Khuzdar	278	2.0109	0.04*	Do
6	Risalpur	315	2.2795	0.02*	Do	Lahore	284	2.0545	0.04*	Do
7	Peshawar	319	2.3087	0.02*	Do	Lasbella	458	3.3207	0.0008**	Do
8	Mianwali	453	3.2813	0.001**	Do	Mianwali	348	2.5191	0.01**	Do
9	Dalbandin	-249	2.0134	0.04*	Statistically significant decreasing	Chitral	-335	2.4247	0.02*	Statistically significant decreasing trend
10	Carela i dava atta	207	2.0704	0.004**	trena	Drosh	-380	2.7514	0.006**	Do
10	Garni-dupatta	-397	2.8784	0.004	Do	Garhi-	-407	2.9474	0.003**	Do
11	Jiwani	-255	2.0622	0.04*	Do	dupatta				
b. Winter (DJFM) rainfall trend						** Significant at	99% confide	nce interval a	and * significa	ant at 95% confidence interval
1	Dir	301	2.1779	0.03*	Statistically significant increasing trend					
2	Kalat	291	2.1057	0.04*	Do					
3	Mianwali	287	2.1338	0.03*	Do					12

Future climate scenarios

Global warming and future drought

UN/WMO estimate that

- At 1.5°C global temperature increase, the world can experience 2 months average length of drought
- At 2°C, it could be 4 months and
- At 3°C, it could be 10 months average length of drought.

World Meteorological Organization and United Nations

Climate Risks: 1.5°C vs 2°C Global Warming

Climate Risk	1.5°C	2°C				
Extreme Weather	100% increase in flood risk	170% increase in flood risk				
Water Availability	350 million urban residents exposed to severe drought by 2100	410 million urban residents exposed to severe drought by 2100				
Arctic Sea Ice	Ice-free summers in the Arctic at least once every 100 years	Ice-free summers in the Arctic at least once every 10 years				
People	9% of the world's population (700m people) will be exposed to extreme heatwaves at least once every20 years	28% of the world's population (2 billion people) will be exposed to extreme heatwaves at least once every 20 years				
Sea-level Rise	46 million people impacted by sea-level rise of 48cm by 2100	49 million people impacted by sea-level rise of 56cm by 2100				
Oceans	Lower risks to marine biodiversity ecosystems and their ecological functions & services	Higher risks to marine biodiversity ecosystems and their ecological functions & services				
Coral Bleaching	70% of the coral reefs are lost by 2100	Virtually all the coral reefs are lost by 2100				
Costs	Lower economic growth at 2°C than at 1.5°C for many countries, particularly for low-income countries					
Food	Every half degree warming will consistently lead to lower yields and lower nutritional content in tropical regions					

Climate change impacts

Conclusion

- For Wheat yiled, the AIC-based regression modeling indicates that seasonal Tm + Tmax are the best regressors, followed by the 6 other models with different seasonal climate indices.
- For Rice yield, the AIC-based regression modeling indicates that the seasonal $T_m + T_{max} + R$ is the best-fit model followed by 13 other models with different seasonal climate indices combinations.
- For Maize yield, the AIC-based regression modeling indicates that the seasonal Tm + Tmax are the best-fit model regressors followed by 12 other models with different seasonal climate indices combinations.
- For Cotton yield, the AIC-based regression modeling indicates that seasonal Tmin is found in the best-fit model followed by 11 rest models with different seasonal climate indices combinations.
- Seasonal mean temperature (Tm) with significant (p=0.015) increasing trend may reduce the wheat yield which can jeopardize the national food security and seasonal rainfall (R1) potentially erratic may also affect the wheat as well as other crops yield production.
- At 1.5°C global temperature increase, the world can experience 2 months average length of drought
- At 2°C, it could be 4 months and
- At 3°C, it could be 10 months average length of drought.

References:

Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In: (Eds.): Petrov, B.N. and F. Caski Proc. Second International Symposium on Information Theory. Akademiai Kiado. Budapest, 267-281.

Akaike, H. 1983b. Information measures and model selection. Int. Statistical Institute. 44: 277-291. Akaike, H. 1992. Information theory and an extension of the maximum likelihood principle. In: (Eds.): Kotz, S. and N.L. Johnson, Breakthroughs in Statistics., 1: 610-624.

Akaike, H. 1994. Implications of the informational point of view on the development of statistical science. In: (Ed.): Bozdogan, H. Engineering and scientific applications. Proc. First US/Japan conference on the frontiers of statistical modeling: an informational approach. Kluwer, Dordrecht., 3: 27-38.

Burnham, K.P. and D.R. Anderson. 2001. Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl. Res., 28: 111-119.

Burnham, K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference. Springer, New York (Print).

Hurvich, C. and C.L. Tsai. 1989. Regression and time series model selection in small samples. Biometrika., 76: 297-307.

Janjua, P.Z., G. Samad and N. Khan. 2014. Climate change and wheat production in Pakistan: An autoregressive distributed lag approach. NJAS-Wageningen J. Life Sci., 68: 13-19.

Sarfaraz, S., Shoukat, S. S., & Khan, T. M. A. 2021. Investigating wheat yield and climate parameters regression model based on Akaike information criteria. *Pak. J. Bot*, *53*(4), 1299-1306.

Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc., I: 111-147.

Stone, M. 1977. An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. R. Stat. Soc., 1: 44-47.

Shakoor, U., A. Saboor, I. Ali and A.Q. Mohsin. 2011. Impact of climate change on agriculture: empirical evidence from arid region. Pak. J. Agri. Sci., 48: 327-333.

Tariq, A., N. Tabasam, K. Bakhsh, M. Ashfaq and S. Hassan. 2014. Food security in the context of climate change in Pakistan. PJCSS., 8: 540-550.

